Vital AI Development Kit (VDK)

The VDK provides tools for data modeling, data object code generation, access to NoSQL data repositories, and data analysis modules for machine learning, natural language processing, and others.

With the VDK, your team can build, test, and deploy Intelligent Applications with processes to iterate and evolve your applications.

GUI and command-line tools are available to assist data modeling and deploying your code.

When it comes time to scale your application across additional server resources, push your code to the Vital AI Application Platform modules for deployment.

Code Examples

Many code examples can be found in our github repository.

https://github.com/vital-ai/vital-examples

Demos

• This is a demo using VertX and Clarifai API for image recognition:
https://demos.vital.ai/clarifai-app/


• This is a demo that employs MovieLens and the Aspen library to recommend movies based on user’s preference:
https://demos.vital.ai/movie-recommendations-js-app/index.html


• This demo makes use of the Enron data set and Vital Service for select and graph queries:
https://demos.vital.ai/enron-js-app/index.html


• This demo uses the latest version of VertX alongside handlebars.js, Navigo and Bootstrap to create a responsive web application:
https://demos.vital.ai/vertx-app-sample/index.html
With a login of username: guest, password: guest


• This is demo of an E-commerce store with functionalities such as billing, account management and product listing:
https://demos.vital.ai/commerce/index.html


• This is a demo for the categorization of text and URL using the Taxonmy API by Alchemy API:
https://demos.vital.ai/alchemyapi-app/


VitalSigns

Vital AI provides a low-level Core data model which allows different data processing components to have a common data framework. This Core data model is extended to include objects for common use cases, such as "User", "Document", "Event", and others. This Vital Domain Model is extended to include objects that are required for an application. This becomes the Application Domain Model. For example, if an application will recommend movies to users, then the application may extend the domain model to include objects for "Film", "Actor", and "Genre". VitalSigns provides development tools to define a data model across the entire application and generate objects, which are then used in various components, including the Application's User Interface, Vital Flows, and Spark/Hadoop. This means that the definition of the "User" object is the same in the Application's User Interface, in Vital Flows for recommendations, and in the Spark/Hadoop machine learning jobs. This speeds development and eliminates many problems with data incompatibilities. VitalSigns handles data mapping across components, across different programming languages and data repositories.

 

Data Analysis

With multiple data analysis modules, Vital AI enables various types of Artificial Intelligence.

Machine Learning

With machine learning, you can categorize data or make numerical predictions.

Natural Language Processing

With Natural Language Processing, you can categorize text, extract entities (names of people, places, organizations, and things), extract sentiment, extract relationships.

Graph Analysis

With graph analysis, including social network analysis, you can determine important items and people in networks.

Logical Inference

Using logical inference, you can use rules and infer new insights from your data.

Presentations

Optimizing the Data Supply Chain for Data Science

See our presentation from the November 2015 Enterprise Dataversity for information about optmizing the data supply chain.

Vital AI MetaQL

See our presentation from the August 2015 NoSQL Now! for information about MetaQL.

Big Data Modeling

See our presentation from the August 2014 Semantic Technology Conference for information about data models with Big Data.

Creating Intelligent Apps

See our presentation from the October 2013 NYC Semantic Technology Conference for information about developing Intelligent Apps.